PGE2 stimulates human brain natriuretic peptide expression via EP4 and p42/44 MAPK.

نویسندگان

  • Jian-Yong Qian
  • Alicia Leung
  • Pamela Harding
  • Margot C LaPointe
چکیده

Brain natriuretic peptide (BNP) produced by cardiac myocytes has antifibrotic and antigrowth properties and is a marker of cardiac hypertrophy. We previously showed that prostaglandin E2 (PGE2) is the main prostaglandin produced in myocytes treated with proinflammatory stimuli and stimulates protein synthesis by binding to its EP4 receptor. We hypothesized that PGE2, acting through EP4, also regulates BNP gene expression. We transfected neonatal ventricular myocytes with a plasmid encoding the human BNP (hBNP) promoter driving expression of a luciferase reporter gene. PGE2 increased hBNP promoter activity 3.5-fold. An EP4 antagonist reduced the stimulatory effect of PGE2 but not an EP1 antagonist. Because EP4 signaling can involve adenylate cyclase, cAMP, and protein kinase A (PKA), we tested the effect of H-89, a PKA inhibitor, on PGE2 stimulation of the hBNP promoter. H-89 at 5 muM decreased PGE2 stimulation of BNP promoter activity by 100%. Because p42/44 MAPK mediates the effect of PGE2 on protein synthesis, we also examined the role of MAPKs in the regulation of BNP promoter activity. PGE2 stimulation of the hBNP promoter was inhibited by a MEK1/2 inhibitor and a dominant-negative mutant of Raf, indicating that p42/44 MAPK was involved. In contrast, neither a p38 MAPK inhibitor nor a JNK inhibitor reduced the stimulatory effect of PGE2. Involvement of small GTPases was also studied. Dominant-negative Rap inhibited PGE2 stimulation of the hBNP promoter, but dominant-negative Ras did not. We concluded that PGE2 stimulates the BNP promoter mainly via EP4, PKA, Rap, and p42/44 MAPK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation.

Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase an...

متن کامل

Interleukin-1beta regulation of inducible nitric oxide synthase and cyclooxygenase-2 involves the p42/44 and p38 MAPK signaling pathways in cardiac myocytes.

The genes encoding inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2, also known as prostaglandin-endoperoxide synthase-2) are induced in many types of cells in response to proinflammatory cytokines. We have previously shown that interleukin-1beta (IL) stimulates iNOS and COX-2 mRNA in cardiac myocytes. Because IL has been shown to activate mitogen-activated protein kinase (MAP...

متن کامل

Interleukin-1b Regulation of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Involves the p42/44 and p38 MAPK Signaling Pathways in Cardiac Myocytes

The genes encoding inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2, also known as prostaglandin-endoperoxide synthase-2) are induced in many types of cells in response to proinflammatory cytokines. We have previously shown that interleukin-1b (IL) stimulates iNOS and COX-2 mRNA in cardiac myocytes. Because IL has been shown to activate mitogen-activated protein kinase (MAPK) ...

متن کامل

Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases.

We showed before that in neonatal rat cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophic growth and transcriptional regulations of genes that are markers of cardiac hypertrophy. In view of the suggested roles of Ras and p42/44 mitogen-activated protein kinases (MAPKs) as key mediators of cardiac hypertrophy, the aim of this work was to...

متن کامل

PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes.

We have previously reported that 1) inhibition of cyclooxygenase-2 and PGE(2) production reduces hypertrophy after myocardial infarction in mice and 2) PGE(2) acting through its EP4 receptor causes hypertrophy of neonatal ventricular myocytes (NVMs) via ERK1/2. It is known that EP4 couples to adenylate cyclase, cAMP, and PKA. The present study was designed to determine interactions between the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006